Cart (Loading....) | Create Account
Close category search window
 

Oil Spill Detection in Radarsat and Envisat SAR Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We present algorithms for automatic detection of oil spills in synthetic aperture radar (SAR) images. The algorithms consist of three main parts, namely: 1) detection of dark spots; 2) feature extraction from the dark spot candidates; and 3) classification of dark spots as oil spills or look-alikes. The algorithms have been trained on a large number of Radarsat and Envisat Advanced Synthetic Aperture Radar (ASAR) images. The performance of the algorithm is compared to manual and semiautomatic approaches in a benchmark study using 59 Radarsat and Envisat images. The algorithms can be considered to be a good alternative to manual inspection when large ocean areas are to be inspected

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.