By Topic

Modeling and Control Design for Performance Management of Web Servers Via an LPV Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wubi Qin ; Mech. Eng. Dept., Pennsylvania State Univ., University Park, PA ; Qian Wang

This paper presents a control-theoretic approach to the performance management of Internet Web servers to meet service-level agreements. In particular, a CPU frequency management problem is studied to provide response time guarantees with minimal energy cost. It is argued that linear time-invariant modeling and control may not be sufficient for the system to adapt to dynamically varying load conditions. Instead, a Linear-parameter-varying (LPV) approach is presented in this paper, where workload arrival and service parameters are chosen as scheduling parameters to characterize time-varying operating conditions. Modeling the performance management of a Web server as an LPV system has been extensively discussed in this paper; we have derived first-principles models based on analyzing transient and steady-state queueing dynamics as well as empirical models using system identification algorithms. LPV-Hinfin controllers are then designed for the derived LPV system models. Using real Web server workloads, the performance of LPV control compares favorably to various linear control designs and a design based on the conventional queueing theory. The proposed LPV modeling and control framework can be generalized to incorporate more sophisticated workload models and more complicated server environments. In addition, due to the LPV nature of Web systems with respect to load conditions, the proposed approach can be applied to a variety of resource management problems and used for middleware designs

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:15 ,  Issue: 2 )