By Topic

Repetitive Learning Control of Nonlinear Continuous-Time Systems Using Quasi-Sliding Mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiao-Dong Li ; Dept. of Manuf. Eng. & Eng. Manage., City Univ. of Hong Kong, Kowloon ; Tommy W. S. Chow ; John K. L. Ho ; Hong-Zhou Tan

In this brief, a quasi-sliding mode (QSM)-based repetitive learning control (RLC) method is proposed for tackling multi-input multi-output nonlinear continuous-time systems with matching perturbations. The proposed RLC method is able to perform rejection of periodic exogenous disturbances as well as tracking of periodic reference trajectories. It ensures a robust system stability when it is subject to nonperiodic uncertainties and disturbances. In this brief, an application to a robotic manipulator is used to illustrate the performance of the proposed QSM-based RLC method. A comparative study with the conventional variable structure control (VSC) technique is also included

Published in:

IEEE Transactions on Control Systems Technology  (Volume:15 ,  Issue: 2 )