Cart (Loading....) | Create Account
Close category search window

Constrained Nonlinear Predictive Control for Maximizing Production in Polymerization Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alamir, M. ; CNRS, Saint Martin d''Heres ; Sheibat-Othman, N. ; Othman, S.

In this brief, a new constrained nonlinear predictive control scheme is proposed for maximizing the production in polymerization processes. The key features of the proposed feedback strategy are its ability to rigorously handle the process constraints (input saturation, maximum allowed heat production, maximal temperature values, and rate of change) as well as its real time implementability due to the low dimensional control parametrization being used. Simulations are proposed to show the efficiency of the proposed feedback as well as its robustness to model uncertainties. The controller performance is also validated experimentally on a laboratory scale reactor to control the emulsion polymerization of styrene

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:15 ,  Issue: 2 )

Date of Publication:

March 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.