Cart (Loading....) | Create Account
Close category search window
 

Polymer composite/nanocomposite processing and its effect on the electrical properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Singha, S. ; Dept. of Electr. Eng., Indian Inst. of Sci., Bangalore ; Thomas, M.J.

One of the biggest challenges when considering polymer nanocomposites for electrical insulation applications lies in determining their electrical properties accurately, which in turn depend on several factors, primary being dispersion of particles in the polymer matrix. With this background, this paper reports an experimental study to understand the effects of different processing techniques on the dispersion of filler particles in the polymer matrix and their related effect on the dielectric properties of the composites. Polymer composite and nanocomposite samples for the study were prepared by mixing 10% by weight of commercially available TiO2 particles of two different sizes in epoxy using different processing methods. A considerable effect of the composite processing method could be seen in the dielectric properties of nanocomposites

Published in:

Electrical Insulation and Dielectric Phenomena, 2006 IEEE Conference on

Date of Conference:

15-18 Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.