By Topic

Comparison of Two Target Classification Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, J.S. ; The Ohio State University ElectroScience Laboratory ; Walton, E.K.

It has been shown that radar returns in the resonance region carry information regarding the overall dimensions and shape of targets. Two radar target classification techniques developed to utilize such returns are discussed. Both of these techniques utilize resonance region backscatter measurements of the radar cross section (RCS) and the intrinsic target backscattered phase. A target catalog used for testing the techniques was generated from measurements of the RCS of scale models of modern aircraft and naval ships using a radar range at The Ohio State University. To test the classification technique, targets had their RCS and phase taken from the data base and corrupted by errors to simulate full-scale propagation path and processing distortion. Several classification methods were then used to determine how well the corrupted measurements fit the measurement target signatures in the catalog. The first technique uses nearest neighbor (NN) algorithms on the RCS magnitude and (range corrected) phase at a number (e.g., 2, 4, or 8) of operating frequencies. The second technique uses an inverse Fourier transformation of the complex multifrequency radar returns to the time domain followed by cross correlation. Comparisons are made of the performance of the two techniques as a function of signal-to-error noise power ratio for various processing options.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-22 ,  Issue: 1 )