By Topic

Efficient Approximation of Kalman Filter for Target Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Baheti, R.S. ; General Electric Company

A Kalman filter in the Cartesian coordinates is described for a maneuvering target when the radar sensor measures range, bearing, and elevation angles in the polar coordinates at high data rates. An approximate gain computation algorithm is developed to determine the filter gains for on-line microprocessor implementation. In this approach, gains are computed for three uncoupled filters and multiplied by a Jacobian transformation determined from the measured target position and orientation. The algorithm is compared with the extended Kalman filter for a typical target trajectory in a naval gun fire control system. The filter gains and the tracking errors for the proposed algorithm are nearly identical to the extended Kalman filter, while the computation requirements are reduced by a factor of four.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-22 ,  Issue: 1 )