By Topic

Determination of the Number of Cells in a Stepped Sine Wave Inverter for Equal Charge Transfer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Appelbaum ; Tel-Aviv University ; D. Gabbay

The synthesis of an inverter sine wave output voltage by a staircase wave shape of low level voltage sources (cells) is accomplished by combining the cells in series at specific time intervals. Different cells of the inverter are then connected to the load for different time durations which results in unequal discharging of the cells. In order for the cells to transfer equal charge during the system operation, each voltage step should consist of a different number of cells in a parallel combination (module), the number of which depends on the time along the wave shape. The number of cells in each module is determined from the circuit current analysis and the appropriate switching time intervals, and is performed for a resistive and an inductive load. This number depends on the number of inverter voltage steps, the cell internal resistance, and the type of the load. The proper number of cells in the modules ensures identical state of charge of the cells, and equal cell recharging, and simplifies cell inspection, maintenance, and replacement.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:AES-21 ,  Issue: 4 )