By Topic

Faraday Loss for L-Band Radar and Communications Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

The mechanism of Faraday rotation as it affects radar and communication propagation has been extensively treated (1, 7). The purpose of this paper is to point out the magnitude of the effect and its possible consequences which have not been appreciated. Contrary to what many believe, the two-way Faraday rotation angle and loss can be large at L-band for ground-based, linearly polarized radar systems observing targets above the ionosphere. Similarly, the one-way Faraday rotation and loss for linearly polarized, ground-to-space pace communication links at comparable frequencies can be large. The magnitude of the rotation loss depends on the location of the radar or communication station in latitude and longitude, the condition of the ionosphere, and the elevation and azimuth angles of the target. For example, based on the total electron content in 1970 (a peak sunspot activity year) at L-band, a two-way Faraday rotation greater than 50°a loss greater than 3.8 dB is calculated to occur at 60° N, 70° W, 75 percent of the time between the hours of 10 A.M. and 4 P.M. for nine months, and 22 percent of the total time for the entire year, when looking toward the south magnetic pole at low elevation angles. For the same year this rotation and loss at 15°N, 150° is calculated to occur 48 percent of the total time when looking south at low elevation angles.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-21 ,  Issue: 4 )