By Topic

Adaptive Optical Target Detection Using Correlated Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Margalit, A. ; University of Southern California ; Reed, I.S. ; Gagliardi, R.M.

A method for target detection that achieves clutter rejection by the use of multiple observations of the same target scene is developed. Multiple scene observations can be obtained by processing separate frequency bands of the same target scene or by recursively processing sequential observations in time. Optimal detection algorithms are developed, based on the assumption that the image intensity can be modeled as a variable mean spatial Gaussian process. Several fast detection algorithms are derived which make use of the fact that the covariance matrices of many optical and infrared (IR) images can be accurately approximated by diagonal matrices. These algorithms provide efficient solutions to the problem of processing multiple correlated scenes or multiple sequential imaging. Computer simulations based on actual optical and IR image data were used for checking the theoretical results. The new detection algorithms achieved performance improvement in detection signal-to-noise ratio of up to 10 dB over conventional target correlation methods.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-21 ,  Issue: 3 )