By Topic

VTOL Aircraft Control Output Tracking Sensitivity Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
de Melo, J.D. ; Universidade Federal de Santa Catarina ; Singh, S.N.

A method is presented for reducing trajectory sensitivity and achieving robust asymptotic tracking for linear feedback systems when there are parameter perturbations and disturbance inputs. The controller consists of a servocompensator containing the modes of the reference signals and disturbance inputs, a stabilizing feedback loop, and a feedforward compensator. Application of the method to the design of a vertical takeoff and landing (VTOL) aircraft flight control system is discussed. The use of a precompensator allows performance maneuvers such that the aircraft tracks desired trajectories and the feedforward and feedback signals aid in reducing the trajectory sensitivity to variations of parameters due to change in airspeed and to wind gust. Simulation results are presented to show the robust tracking, disturbance rejection, and sensitivity reduction capabilities of the flight control system.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-20 ,  Issue: 2 )