By Topic

An adaptive learning algorithm for principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liang-Hwa Chen ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Shyang Chang

Principal component analysis (PCA) is one of the most general purpose feature extraction methods. A variety of learning algorithms for PCA has been proposed. Many conventional algorithms, however, will either diverge or converge very slowly if learning rate parameters are not properly chosen. In this paper, an adaptive learning algorithm (ALA) for PCA is proposed. By adaptively selecting the learning rate parameters, we show that the m weight vectors in the ALA converge to the first m principle component vectors with almost the same rates. Comparing with the Sanger's generalized Hebbian algorithm (GHA), the ALA can quickly find the desired principal component vectors while the GHA fails to do so. Finally, simulation results are also included to illustrate the effectiveness of the ALA

Published in:

Neural Networks, IEEE Transactions on  (Volume:6 ,  Issue: 5 )