By Topic

On the persistency of excitation in radial basis function network identification of nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gorinevsky, D. ; Dept. of Mech. Eng., Toronto Univ., Ont., Canada

Considers radial basis function (RBF) network approximation of a multivariate nonlinear mapping as a linear parametric regression problem. Linear recursive identification algorithms applied to this problem are known to converge, provided the regressor vector sequence has the persistency of excitation (PE) property. The main contribution of this paper is formulation and proof of PE conditions on the input variables. In the RBF network identification, the regressor vector is a nonlinear function of these input variables. According to the formulated condition, the inputs provide PE, if they belong to domains around the network node centers. For a two-input network with Gaussian RBF that have typical width and are centered on a regular mesh, these domains cover about 25% of the input domain volume. The authors further generalize the proposed solution of the standard RBF network identification problem and study affine RBF network identification that is important for affine nonlinear system control. For the affine RBF network, the author formulates and proves a PE condition on both the system state parameters and control inputs

Published in:

Neural Networks, IEEE Transactions on  (Volume:6 ,  Issue: 5 )