Cart (Loading....) | Create Account
Close category search window
 

Training neural nets with the reactive tabu search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Battiti, R. ; Dipartimento di Matematica, Trento Univ., Italy ; Tecchiolli, G.

In this paper the task of training subsymbolic systems is considered as a combinatorial optimization problem and solved with the heuristic scheme of the reactive tabu search (RTS). An iterative optimization process based on a “modified local search” component is complemented with a meta-strategy to realize a discrete dynamical system that discourages limit cycles and the confinement of the search trajectory in a limited portion of the search space. The possible cycles are discouraged by prohibiting (i.e., making tabu) the execution of moves that reverse the ones applied in the most recent part of the search. The prohibition period is adapted in an automated way. The confinement is avoided and a proper exploration is obtained by activating a diversification strategy when too many configurations are repeated excessively often. The RTS method is applicable to nondifferentiable functions, is robust with respect to the random initialization, and effective in continuing the search after local minima. Three tests of the technique on feedforward and feedback systems are presented

Published in:

Neural Networks, IEEE Transactions on  (Volume:6 ,  Issue: 5 )

Date of Publication:

Sep 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.