By Topic

Self-association and Hebbian learning in linear neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Palmieri, F. ; Dept. of Electr. & Syst. Eng., Connecticut Univ., Storrs, CT, USA ; Zhu, J.

Studies Hebbian learning in linear neural networks with emphasis on the self-association information principle. This criterion, in one-layer networks, leads to the space of the principal components and can be generalized to arbitrary architectures. The self-association paradigm appears to be very promising because it accounts for the fundamental features of Hebbian synaptic learning and generalizes the various techniques proposed for adaptive principal component networks. The authors also include a set of simulations that compare various neural architectures and algorithms

Published in:

Neural Networks, IEEE Transactions on  (Volume:6 ,  Issue: 5 )