By Topic

Stability Measurement Problems and Techniques for Operational Airborne Pulse Doppler Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gray, M. ; Aerospace Division Westinghouse Defense and Space Center Baltimore, Md. ; Hutchinson, F. ; Ridgely, D. ; Fruge, F.
more authors

In the deployment of pulse Doppler (PD) radar, determination of phase and amplitude stability is the most difficult measurement problem. Unique requirements are placed on pulse and carrier stability so that the radar can perform in strong clutter. Because of subclutter visibility and sensitivity specifications, coherent noise, which is insignificant for noncoherent pulse radars, becomes extremely important. In solving the measurement problem, special support equipment was developed which is considered to have reached such a degree of refinement that it is probably one of the most technically advanced pieces of field test equipment supporting any operational radar. This paper discusses stability requirements, sources of instability, and the combination of techniques selected for verification of compliance of the PD radar with the stability requirements. The results of a program to develop special field support equipment to satisfy the measurement requirements are emphasized. Results of field experience and the special training required of military field personnel to enable them to effectively use this relatively complex support equipment are discussed.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-5 ,  Issue: 4 )