By Topic

A Hybrid Navigation Concept Using a Spinning Satellite-Borne Interferometer and Self-Contained Equipment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thoma, G.R. ; Applied Information Industries Moorestown, N.J. 08057 ; Berkowitz, Raymond S.

This paper analyzes a hybrid navigation concept that uses signals from a radio interferometer mounted on a spinning geostationary satellite, preliminary position estimates from self-contained equipment, and stored a priori information on the past performance of this equipment. The craft-borne processor, optimum in the maximum a posteriori (MAP) sense, is designed to estimate position coordinates using only the incoming radio signals, although improved estimates result if the other two items are available. An error analysis starts with the derivation of an estimation error covariance matrix, whose elements depend on additive receiver noise and the physical parameters of the system. A minimum 1¿ estimation error in position is obtained by trading off these parameters. The effects of other major error sources, such as tropospheric phase fluctuations, multipath, and craft altitude uncertainty, are added to the estimation error to give a total 1¿ position error on the order of 3.7 to 5.6 km.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-8 ,  Issue: 4 )