By Topic

Solar Pressure Attitude Stabilization of Earth-Pointing Spacecraft

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pande, K.C. ; Indian Institute of Technology Kanpur, India ; Venkatachalam, R.

The development of a solar pressure control system for three-axis attitude control of Earth-oriented spacecraft is presented. A controller configuration consisting of two rotatable mirrorlike surfaces, representing the minimum hardware implementation, is considered. Optimal control theory is applied to synthesize a feedback control law directly governing the differential rotation of the control surfaces. The system performance is evaluated through the response analysis of a satellite subject to destabilizing gravity gradient torques as well as external disturbances. Even under such adverse conditions, the results indicate a moderately sized controller to be quite effective in maintaining the desired Earth-pointing spacecraft orientation. The validity of the optimal control law is established for all times of the year, and the feasibility of implementing suboptimal control policies is also examined.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-17 ,  Issue: 6 )