By Topic

14.5-14.8 GHz Frequency Sharing by Data Relay Satellite Uplinks and Broadcasting-Satellite Uplinks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hines, O.T. ; Systematics General Corporation

Data relay satellites are being developed to provide real-time data links between research satellites in low earth orbits and central data acquisition and processing facilities. Frequency assignments for data relay satellite links will be made in bands allocated internationally to the space research service. One of the bands which will be used lies between 14.5 and 15.35 GHz, where the space research service has had a frequency allocation as a secondary service since 1971. During the General World Administrative Radio Conference of the International Telecommunication Union, held in Geneva in 1979, a primary frequency allocation was made in the band 14.5-14.8 GHz to the fixed-satellite service, specifically for use by earth-to-space links of the broadcasting satellite service. The feasibility of shared band operation is evaluated between data relay satellite uplinks and broadcasting-satellite feeder links in the band 14.5-14.8 GHz. Relationships for predicting interference power levels are formulated, as functions of satellite separation and of earth station separation. Tradeoffs between satellite separation angle and earth station separation are explored, and conclusions are drawn regarding the feasibility of band sharing. Co-channel operation is demonstrated to be technically feasible for typical systems, provided appropriate separations are maintained.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-17 ,  Issue: 3 )