By Topic

Target-Motion-Induced Radar Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-Ching Chen ; Hughes Aircraft Company ; Andrews, H.C.

Imaging from ground-based (stationary) radars of moving targets is often possible by utilizing a "synthetic aperture" developed from the target motion itself. The theory and experimental results associated with such processing are addressed. An aircraft is imaged from both a straight flight and a turn with recognizable results. Analysis shows that two-phase components exist in the radar return, one being gross velocity induced, the other being interscatterer interference within the target itself. The former phase must be removed prior to imaging and techniques are developed for this task. Preprocessing, range curvature, range alignment, motion compensation, and presumming are all addressed prior to presenting the experimental results. Coherence processing intervals, range collapsing, and range realignment are all examined during the processing aspects of the paper.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:AES-16 ,  Issue: 1 )