By Topic

A Thermal Management and Profiling Method for Reconfigurable Hardware Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Phillip H. Jones ; Applied Research Laboratory, Washington University, St. Louis, MO, email: ; John W. Lockwood ; Young H. Cho

Given large circuit sizes, high clock frequencies, and possibly extreme operating environments, Field Programmable Gate Arrays (FPGAs) are capable of heating beyond their designed thermal limits. As new circuits are developed for FPGAs and deployed remotely, engineers are challenged to determine in advance if the device will operate within recommended thermal ranges. The amount of power consumed by the circuit depends on how an algorithm is compiled into hardware, how the circuit is placed and routed, and the patterns of data that pass through the system. The amount of heat that can be dissipated depends on the thermal transfer characteristics of the package, the air flow that passes over the package, and the ambient temperature of the remote systems. Rather than designing a system to handle unreasonable worst-case situations, we have implemented a thermal management system that continuously monitors the temperature of the FPGA and reprograms the device if the temperate approaches the outer limits of safe operating conditions. Our system measures the junction temperature of a Xilinx Virtex FPGA using a built-in thermal diode. Using the temperature monitoring mechanism, we have studied the steady-state and transient conditions of multiple benchmark circuits implemented in an FPGA logic on the Field-programmable Port Extender (FPX) development platform. We observed properties of these benchmark circuits that enable us to predict power and thermal characteristics for real applications. We propose a Dynamic Thermal Management (DTM) strategy for FPGAs based on temperature feedback.

Published in:

2006 International Conference on Field Programmable Logic and Applications

Date of Conference:

Aug. 2006