By Topic

FPGA Performance Optimization Via Chipwise Placement Considering Process Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lerong Cheng ; EE Department, University of California, Los Angeles, CA 90095, USA ; Jinjun Xiong ; Lei He ; Hutton, M.

Both custom IC and FPGA designs in the nanometer regime suffer from process variations. But different from custom ICs, FPGAs¿ programmability offers a unique design freedom to leverage process variation and improve circuit performance. We propose the following variation aware chip-wise placement flow in this paper. First, we obtain the variation map for each chip by synthesizing the test circuits for each chip as a preprocessing step before detailed placement. Then we use the trace-based method to estimate the performance gain achievable by chipwise placement. Such estimation provides a lower bound of the performance gain without detailed placement. Finally, if the gain is significant, a variation aware chipwise placement is used to place the circuits according to the variation map for each chip. Our experimental results show that, compared to the existing FPGA placement, variation aware chipwise placement improves circuit performance by up to 19.3% for the tested variation maps.

Published in:

Field Programmable Logic and Applications, 2006. FPL '06. International Conference on

Date of Conference:

Aug. 2006