Cart (Loading....) | Create Account
Close category search window
 

Tools for Performance Analysis and Design of Space–Time Block Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vajapeyam, M. ; Inst. of Commun. Sci., Univ. of Southern California, Los Angeles, CA ; Geng, J. ; Mitra, U.

Space-time block codes (STBCs) have attracted recent interest due to their ability to take advantage of both space and time diversity to reliably transmit data over a wireless fading channel. In many cases, their design is based on asymptotically tight performance criteria, such as the worst-case pairwise error probability (PEP) or the union bound. However, these quantities fail to give an accurate performance picture, especially at low signal-to-noise ratio, because the classical union bound is known to be loose in this case. This paper develops tighter performance criteria for STBCs which yield considerably better bounds. First, the union bound is developed as the average of the exact PEPs. By noting that some of the terms in the bound are redundant, a second bound is obtained by expurgation. Since this still yields a loose bound, a tighter bound, denoted as the progressive union bound (PUB), is obtained. Because the PUB cannot be computed in closed form, in its most general case, and to avoid computing a high-dimensional numerical integration, its saddlepoint approximation is developed. In addition to the significant improvement of the PUB analysis over other bounding methods, it is also shown that codes designed to optimize the PUB can perform better than those obtained by the looser criteria

Published in:

Communications, IEEE Transactions on  (Volume:55 ,  Issue: 2 )

Date of Publication:

Feb. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.