Cart (Loading....) | Create Account
Close category search window
 

A Model-Based Deconvolution Approach to Solve Fiber Crossing in Diffusion-Weighted MR Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dell'Acqua, F. ; Univ. of Milano-Bicocca, Milan ; Rizzo, G. ; Scifo, P. ; Clarke, R.A.
more authors

A deconvolution approach is presented to solve fiber crossing in diffusion magnetic resonance imaging. In order to provide a direct physical interpretation of the signal generation process, we started from the classical multicompartment model and rewrote this in terms of a convolution process, identifying a significant scalar parameter alpha to characterize the physical system response. Deconvolution is performed by a modified version of the Richardson-Lucy algorithm. Simulations show the ability of this method to correctly separate fiber crossing, even in the presence of noisy data, with lower signal-to-noise ratio, and imprecision in the impulse response function imposed during deconvolution. The in vivo data confirms the efficacy of this method to resolve fiber crossing in real complex brain structures. These results suggest the usefulness of our approach in fiber tracking or connectivity studies

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:54 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.