Cart (Loading....) | Create Account
Close category search window
 

Quasi-Cyclic LDPC Codes for the Magnetic Recording Channel: Code Design and VLSI Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hao Zhong ; Dept. of Electr. Comput. & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY ; Tong Zhong ; Haratsch, E.F.

By implementing a field-programmable gate array (FPGA)-based simulator, we investigate the performance of randomly constructed high-rate quasi-cyclic (QC) low-density parity-check (LDPC) codes for the magnetic recording channel at very low block sector error rates. On the basis of extensive simulations, we conjecture guidelines for designing randomly constructed high-rate regular QC-LDPC codes with low error floor for the magnetic recording channel. Experimental results show that our high-rate regular QC-LDPC codes do not suffer from error floor, at least at block error rates of 10-9, and can realize significant coding gains over Reed-Solomon codes that are used in current practice. Furthermore, we develop a QC-LDPC decoder hardware architecture that is well suited to achieving high decoding throughput. Finally, to evaluate the implementation feasibility of LDPC codes for the magnetic recording channel, using 0.13 mum standard cell and memory libraries, we designed a read channel signal processing datapath consisting of a parallel max-log-MAP detector and a QC-LDPC decoder, which can achieve a throughput up to 1.8 Gb/s

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.