By Topic

Effects of Armature Reaction on the Performance of a Claw Pole Motor With Soft Magnetic Composite Stator by Finite-Element Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
You Guang Guo ; Fac. of Eng., Univ. of Technol., Sydney, NSW ; Jian Guo Zhu ; Hai Yan Lu

We investigated the effects of armature reaction on the performance of a three-phase three-stack claw pole motor with soft magnetic composite stator core by using three-dimensional finite-element analysis (FEA), which is an effective approach to accurately compute the parameters and performance such as the back electromotive force (EMF), core losses, and winding inductance at various saturation levels. The motor is rated as 500 W at 1800 rpm when the stator current is 4.1 A, driven by a sensorless brushless DC scheme. Because of the armature reaction, the back EMF produced by the rotor permanent magnets and the developed torque is reduced by about 3.3% at the rated load, and the core losses increase drastically by 41% from no-load to full-load. The winding inductance is computed with different loads at different rotor angles

Published in:

IEEE Transactions on Magnetics  (Volume:43 ,  Issue: 3 )