By Topic

The Role of 3-D Sound in Human Reaction and Performance in Augmented Reality Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
ZhiYing Zhou ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore ; Adrian David Cheok ; Yan Qiu ; Xubo Yang

Three-dimensional sound's effectiveness in virtual reality (VR) environments has been widely studied. However, due to the big differences between VR and augmented reality (AR) systems in registration, calibration, perceptual difference of immersiveness, navigation, and localization, it is important to develop new approaches to seamlessly register virtual 3-D sound in AR environments and conduct studies on 3-D sound's effectiveness in AR context. In this paper, we design two experimental AR environments to study the effectiveness of 3-D sound both quantitatively and qualitatively. Two different tracking methods are applied to retrieve the 3-D position of virtual sound sources in each experiment. We examine the impacts of 3-D sound on improving depth perception and shortening task completion time. We also investigate its impacts on immersive and realistic perception, different spatial objects identification, and subjective feeling of "human presence and collaboration". Our studies show that applying 3-D sound is an effective way to complement visual AR environments. It helps depth perception and task performance, and facilitates collaborations between users. Moreover, it enables a more realistic environment and more immersive feeling of being inside the AR environment by both visual and auditory means. In order to make full use of the intensity cues provided by 3-D sound, a process to scale the intensity difference of 3-D sound at different depths is designed to cater small AR environments. The user study results show that the scaled 3-D sound significantly increases the accuracy of depth judgments and shortens the searching task completion time. This method provides a necessary foundation for implementing 3-D sound in small AR environments. Our user study results also show that this process does not degrade the intuitiveness and realism of an augmented audio reality environment

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:37 ,  Issue: 2 )