By Topic

A Neural Network Integrated Decision Support System for Condition-Based Optimal Predictive Maintenance Policy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sze-jung Wu ; Sch. of Ind. Eng., Purdue Univ., West Lafayette, IN ; Gebraeel, N. ; Lawley, M.A. ; Yih, Y.

This paper develops an integrated neural-network-based decision support system for predictive maintenance of rotational equipment. The integrated system is platform-independent and is aimed at minimizing expected cost per unit operational time. The proposed system consists of three components. The first component develops a vibration-based degradation database through condition monitoring of rolling element bearings. In the second component, an artificial neural network model is developed to estimate the life percentile and failure times of roller bearings. This is then used to construct a marginal distribution. The third component consists of the construction of a cost matrix and probabilistic replacement model that optimizes the expected cost per unit time. Furthermore, the integrated system consists of a heuristic managerial decision rule for different scenarios of predictive and corrective cost compositions. Finally, the proposed system can be applied in various industries and different kinds of equipment that possess well-defined degradation characteristics

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:37 ,  Issue: 2 )