Cart (Loading....) | Create Account
Close category search window
 

Automated Energy/Performance Macromodeling of Embedded Software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Muttreja, A. ; Dept. of Electr. Eng., Princeton Univ., NJ ; Raghunathan, A. ; Ravi, S. ; Jha, N.K.

This paper presents an automatic methodology to perform characterization-based high-level software macromodeling. Macromodeling-based estimation can be used to speed up simulation-based software-performance/energy estimation. High-level software macromodels, which are significantly faster to evaluate than detailed models of the target hardware platform, can be used instead of the latter during simulation, resulting in orders-of-magnitude simulation speedup. However, in order to realize this potential, significant challenges need to be overcome in both the generation and use of macromodels-including how to identify the parameters to be used in the macromodel, how to define the template function to which the macromodel is fitted, etc. The authors' methodology attempts to address the aforementioned issues. Given a subprogram to be macromodeled for execution time and/or energy consumption, the proposed methodology automates the steps of parameter identification, data collection through detailed simulation, macromodel template selection, and fitting. The authors propose a novel technique to identify potential macromodel parameters and perform data collection, which draws from the concept of data-structure serialization used in distributed programming. They utilize symbolic-regression techniques to concurrently filter out irrelevant macromodel parameters, construct a macromodel function, and derive the optimal coefficient values to minimize fitting error. Experiments with several realistic benchmarks suggest that the proposed methodology improves estimation accuracy and enables wide applicability of macromodeling to complex embedded software, while realizing its potential for estimation speedup

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:26 ,  Issue: 3 )

Date of Publication:

March 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.