Cart (Loading....) | Create Account
Close category search window
 

A Parameter-Free Framework for General Supervised Subspace Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shuicheng Yan ; Beckman Inst., Illinois Univ., Urbana, IL ; Jianzhuang Liu ; Xiaoou Tang ; Huang, T.S.

Supervised subspace learning techniques have been extensively studied in biometrics literature; however, there is little work dedicated to: 1) how to automatically determine the subspace dimension in the context of supervised learning, and 2) how to explicitly guarantee the classification performance on a training set. In this paper, by following our previous work on unified subspace learning framework in our earlier work, we present a general framework, called parameter-free graph embedding (PFGE) to solve the above two problems by posing a general supervised subspace learning task as a semidefinite programming problem. The semipositive feature Gram matrix, namely the product of the transformation matrix and its transpose, is derived by optimizing a trace difference form of an objective function extended from that in our earlier work with the constraints that guarantee the class homogeneity within the neighborhood of each datum. Then, the subspace dimension and the feature weights are simultaneously obtained via the singular value decomposition of the feature Gram matrix. In addition, to alleviate the computational complexity, the Kronecker product approximation of the feature Gram matrix is proposed by taking advantage of the essential matrix form of image pixels. The experiments on simulated data and real-world data demonstrate the capability of the new PFGE framework in estimating the subspace dimension for supervised learning as well as the superiority in classification performance over traditional algorithms for subspace learning

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:2 ,  Issue: 1 )

Date of Publication:

March 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.