By Topic

A Performance Instrumentation Framework to Characterize Computation-Communication Overlap in Message-Passing Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Effective overlap of computation and communication is a well understood technique for latency hiding and can yield significant performance gains for applications on high-end computers. In this paper, we propose an instrumentation framework for message-passing systems to characterize the degree of overlap of communication with computation in the execution of parallel applications. The inability to obtain precise time-stamps for pertinent communication events is a significant problem, and is addressed by generation of minimum and maximum bounds on achieved overlap. The overlap measures can aid application developers and system designers in investigating scalability issues. The approach has been used to instrument two MPI implementations as well as the ARMCI system. The implementation resides entirely within the communication library and thus integrates well with existing approaches that operate outside the library. The usefulness of the framework is shown by analyzing available overlap for microbenchmarks and NAS benchmarks, and the insights obtained are used to improve achieved overlap by modifying the NAS SP benchmark

Published in:

Cluster Computing, 2006 IEEE International Conference on

Date of Conference:

25-28 Sept. 2006