By Topic

Performance analysis of b-bit digital receivers for TR-UWB systems with inter-pulse interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jin Tang ; Dept. of Electr. Eng., California Univ., Riverside, CA ; Zhengyuan Xu ; Sadler, B.M.

An ultra-wideband (UWB) transmitted reference (TR) system transmits an un-modulated pulse and a delayed modulated pulse pair. Then, a correlation receiver uses the former to demodulate the latter. Because of the long spread of a typical UWB channel, time delay between the two pulses is preferable to be larger than the channel delay spread for reduced noise at the receiver. However, for bandwidth efficiency, that delay should be made small, resulting in inter-pulse interference at the receiver. In this paper, digital receivers are constructed for TR-UWB systems including inter-pulse interference. A typical mean matching technique, appropriate for both PPM and PAM schemes, is implemented digitally to obtain a good template for symbol detection. Joint estimation and detection performance of this family of digital receivers, using finite number of bits in analog-to-digital conversion and finite noisy observations, is analyzed. Closed form results are derived and verified by computer simulations. In addition, the effect of time offset between the reference pulse and information carrying pulse is studied. Overlap of the two pulses does not incur noticeable performance degradation. The proposed analytical framework can be applied to study detection performance of other related digital receivers not covered in this paper

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 2 )