By Topic

Space and network diversity combination for masked node collision resolution in wireless ad hoc network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhigang Wang ; Center for Adv. Vehicular Syst., Mississippi State Univ., MS ; Lichuan Liu ; MengChu Zhou

In wireless ad hoc networks, the traditional carrier sensing multiple access/collision avoidance protocol cannot solve the masked node problem, which affects the network performance greatly. Our proposed collision separation technique overcomes the shortcoming of the IEEE 802.11 request-to-send-clear-to-send handshake by combining the space diversity provided by the antenna array and network diversity provided by the medium access control layer. In this work, the colliding packets caused by masked nodes are not discarded but stored and combined with the selected retransmission packets to separate the data from different nodes. The steady states of the nodes in the network are analyzed via a Markov chain model. The network throughput and delay performance are also investigated. Compared to network assisted diversity multiple access, our proposed method can provide significantly higher throughput and lower delay

Published in:

Wireless Communications, IEEE Transactions on  (Volume:6 ,  Issue: 2 )