By Topic

Matrix-Group Algorithm via Improved Whitening Process for Extracting Statistically Independent Sources From Array Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Da-Zheng Feng ; Nat. Lab. of Radar Signal Process., Xidian Univ., Xi'an ; Wei Xing Zheng ; Andrzej Cichocki

This paper addresses the problem of blind separation of multiple independent sources from observed array output signals. The main contributions in this paper include an improved whitening scheme for estimation of signal subspace, a novel biquadratic contrast function for extraction of independent sources, and an efficient alterative method for joint implementation of a set of approximate diagonalization-structural matrices. Specifically, an improved whitening scheme is first developed by estimating the signal subspace jointly from a set of diagonalization-structural matrices based on the proposed cyclic maximizer of an interesting cost function. Moreover, the globally asymptotical convergence of the proposed cyclic maximizer is analyzed and proved. Next, a novel biquadratic contrast function is proposed for extracting one single independent component from a slice matrix group of any order cumulant of the array signals in the presence of temporally white noise. A fast fixed-point algorithm that is a cyclic minimizer is constructed for searching a minimum point of the proposed contrast function. The globally asymptotical convergence of the proposed fixed-point algorithm is analyzed. Then, multiple independent components are obtained by using repeatedly the proposed fixed-point algorithm for extracting one single independent component, and the orthogonality among them is achieved by the well-known QR factorization. The performance of the proposed algorithms is illustrated by simulation results and is compared with three related blind source separation algorithms

Published in:

IEEE Transactions on Signal Processing  (Volume:55 ,  Issue: 3 )