By Topic

Bayesian Complex Amplitude Estimation and Adaptive Matched Filter Detection in Low-Rank Interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aleksandar Dogandzic ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA ; Benhong Zhang

We propose a Bayesian method for complex amplitude estimation in low-rank interference. We assume that the received signal follows the generalized multivariate analysis of variance (GMANOVA) patterned-mean structure and is corrupted by low-rank spatially correlated interference and white noise. An iterated conditional modes (ICM) algorithm is developed for estimating the unknown complex signal amplitudes and interference and noise parameters. We also discuss initialization of the ICM algorithm and propose a (non-Bayesian) adaptive-matched-filter (AMF) signal detector that utilizes the ICM estimation results. Numerical simulations demonstrate the performance of the proposed methods

Published in:

IEEE Transactions on Signal Processing  (Volume:55 ,  Issue: 3 )