By Topic

Fabrication and Characterization of Benzocyclobutene Optical Waveguides by UV Pulsed-Laser Illumination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Buried-type benzocyclobutene (BCB) optical waveguides fabricated by UV pulsed-laser illumination are proposed and comprehensively characterized in this paper. The fabrication process is greatly simplified as compared to conventional dry-etched ridge-type BCB waveguides. The measured propagation loss at 1548 nm is as low as 0.6 dB/cm due to the buried waveguide structure. And the produced refractive index change is dependent upon the number of laser shots such that single-mode waveguides with different mode sizes can be tailored for efficient coupling. Furthermore, rigorous analyses of surface damage threshold, rms roughness, and chemical characteristics under different illumination conditions are presented to illustrate the design considerations and the chemical mechanism of the UV-induced BCB waveguides

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 4 )