By Topic

Adaptive Rao–Blackwellized Particle Filter and Its Evaluation for Tracking in Surveillance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xinyu Xu ; Dept. of Comput. Sci. & Eng., Arizona State Univ., Tempe, AZ ; Baoxin Li

Particle filters can become quite inefficient when being applied to a high-dimensional state space since a prohibitively large number of samples may be required to approximate the underlying density functions with desired accuracy. In this paper, by proposing an adaptive Rao-Blackwellized particle filter for tracking in surveillance, we show how to exploit the analytical relationship among state variables to improve the efficiency and accuracy of a regular particle filter. Essentially, the distributions of the linear variables are updated analytically using a Kalman filter which is associated with each particle in a particle filtering framework. Experiments and detailed performance analysis using both simulated data and real video sequences reveal that the proposed method results in more accurate tracking than a regular particle filter

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 3 )