By Topic

Mask Design for Optical Microlithography—An Inverse Imaging Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amyn Poonawala ; Dept. of Comput. Eng., California Univ., Santa Cruz, CA ; Peyman Milanfar

In all imaging systems, the forward process introduces undesirable effects that cause the output signal to be a distorted version of the input. A typical example is of course the blur introduced by the aperture. When the input to such systems can be controlled, prewarping techniques can be employed which consist of systematically modifying the input such that it (at least approximately) cancels out (or compensates for) the process losses. In this paper, we focus on the optical proximity correction mask design problem for "optical microlithography," a process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We consider the idealized case of an incoherent imaging system and solve an inverse problem which is an approximation of the real-world optical lithography problem. Our algorithm is based on pixel-based mask representation and uses a continuous function formulation. We also employ the regularization framework to control the tone and complexity of the synthesized masks. Finally, we discuss the extension of our framework to coherent and (the more practical) partially coherent imaging systems

Published in:

IEEE Transactions on Image Processing  (Volume:16 ,  Issue: 3 )