By Topic

Transform Coefficient Histogram-Based Image Enhancement Algorithms Using Contrast Entropy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Agaian, S.S. ; Coll. of Eng., Texas Univ., San Antonio, TX ; Silver, B. ; Panetta, K.A.

Many applications of histograms for the purposes of image processing are well known. However, applying this process to the transform domain by way of a transform coefficient histogram has not yet been fully explored. This paper proposes three methods of image enhancement: a) logarithmic transform histogram matching, b) logarithmic transform histogram shifting, and c) logarithmic transform histogram shaping using Gaussian distributions. They are based on the properties of the logarithmic transform domain histogram and histogram equalization. The presented algorithms use the fact that the relationship between stimulus and perception is logarithmic and afford a marriage between enhancement qualities and computational efficiency. A human visual system-based quantitative measurement of image contrast improvement is also defined. This helps choose the best parameters and transform for each enhancement. A number of experimental results are presented to illustrate the performance of the proposed algorithms

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 3 )