Cart (Loading....) | Create Account
Close category search window
 

An Integrated Floating-Electrode Electric Microgenerator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei Ma ; Dept. of Mech. Eng., Hong Kong Univ. of Sci. & Technol., Kowloon ; Ruiqing Zhu ; Rufer, L. ; Zohar, Y.
more authors

Microfabricated electric generators, scavenging ambient mechanical energy, are potential power sources for autonomous systems. Described presently are the design, modeling, and implementation of a single-wafer floating-electrode electric microgenerator, integrating a micromechanical resonator and a number of electronic devices. Forming a plate of a variable capacitor, the resonator is responsible for converting mechanical vibration to electricity. A sense transistor and a diode bridge are integrated, respectively, for monitoring the "charging" of the floating electrode and for rectification. A lumped electromechanical model of the generator is developed and expressed in terms of a set of nonlinear coupled state equations that are numerically solved. For small-amplitude excitation, a circuit based on a set of linearized equations is developed. The generator is realized using a compatible combination of standard complementary metal-oxide-semiconductor (CMOS) "floating gate" process and a post-CMOS photoresist molded electroplating process. Adequate agreement between model predictions and measurement results was obtained

Published in:

Microelectromechanical Systems, Journal of  (Volume:16 ,  Issue: 1 )

Date of Publication:

Feb. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.