By Topic

Fabrication of Integrated Vertical Mirror Surfaces and Transparent Window for Packaging MEMS Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Agarwal, R. ; Dept. of Electr. Eng., Univ. of South Florida, Tampa, FL ; Samson, S. ; Kedia, S. ; Bhansali, S.

A scheme for creating metal-coated vertical mirrors in silicon, along with an integrated transparent package lid for assembling, packaging, and testing microelectromechanical systems (MEMS) devices is presented. Deep reaction ion etching (DRIE) method described here reduces the loading effect and maintains a uniform etch rate resulting in highly vertical structures. A novel self-masking lithography and liftoff process was developed to ensure that the vertical mirrors undergo uniform metallization while leaving a transparent window for optical probing. Front side of a Si wafer was shallow-etched using DRIE to define an eventual optical window. This surface was then anodically bonded to a Pyrex wafer. Backside Si was then patterned to define thin channels around the optical window. These channels were vertically etched using DRIE, after which the unattached portions of the window region were removed. Negative photoresist was spun on the remaining vertical structures and the stack was exposed from the Pyrex side using Si structures as a self-mask. Subsequent metal sputtering and liftoff results in the metallized top and mirror sidewalls while leaving a clear window. These integrated mirrors and lids are then bonded to the active MEMS mirrors. Various processes and results are illustrated with an example of packaged corner cube retroreflectors (CCRs)

Published in:

Microelectromechanical Systems, Journal of  (Volume:16 ,  Issue: 1 )