By Topic

Statistical-Physical Models of Electromagnetic Interference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
David Middleton ; Office of Telecommunications, U. S. Department of Commerce, Boulder, CO 80302. (212) 831-8565

Most man-made and natural electromagnetic interference, or "noise," are highly non-Gaussian random processes, whose degrading effects on system performance can be severe, particularly on most conventional systems, which are designed for optimal or near optimal performance against normal noise. In addition, the nature, origins, measurement, and prediction of the general EM interference environment are a major concern of any adequate spectral management program. Accordingly, this study is devoted to the development of analytically tractable, experimentally verifiable, statistical-physical models of such electromagnetic interference. Here, classification into three major types of noise is made: Class A (narrow band vis-á-vis the receiver), Class B (broad band vis-á-vis the receiver), and Class C (= Class A + Class B). First-order statistical models are constructed for the Class A and Class B cases. In particular, the APD (a posteriori probability distribution) or exceedance probability, PD, vis;P1 (¿ > ¿o)A,B, (and the associated probability densities, pdf's w1(¿)A,B,[1]) of the envelope are obtained; (the phase is shown to be uniformly distributed in (0, 2¿). These results are canonical, i.e., their analytic forms are invariant of the particular noise source and its quantifying parameter values, levels, etc. Class A interference is described by a 3-parameter model, Class B noise by a 6-parameter model.

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:EMC-19 ,  Issue: 3 )