By Topic

Characterization of ultra-high-speed pseudomorphic AlGaAs/InGaAs (on GaAs) MODFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
L. D. Nguyen ; Sch. of Electr. Eng., Cornell Univ., Ithaca, NY, USA ; P. J. Tasker ; D. C. Radulescu ; L. F. Eastman

The authors report a detailed characterization of ultrahigh-speed pseudomorphic AlGaAs/InGaAs (on GaAs) modulation-doped field-effect transistors (MODFETs) with emphasis on the device switching characteristics. The nominal 0.1-μm gate-length device exhibit a current gain cutoff frequency (ft) as high as 152 GHz. This value of ft corresponds to a total delay of approximately 1.0 ps and is attributed to the optimization of layer structure, device layout, and fabrication process. It is shown that the electron transit time in these very short gate-length devices still accounts for approximately 60% of the total delay, and, as a result, significant improvements in switching speed are possible with further reductions of gate length. The results reported clearly demonstrate the potential of the pseudomorphic AlGaAs/InGaAs MODFET as an ultrahigh-speed device. Its excellent switching characteristics are attributed to the high saturation velocity (~2×107 cm/s), 2DEG sheet density (2.5×1012 cm-2), and current drive capability (>200 mA/mm at the peak transconductance)

Published in:

IEEE Transactions on Electron Devices  (Volume:36 ,  Issue: 10 )