By Topic

Toward Real-Time Image Guided Neurosurgery Using Distributed and Grid Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Chrisochoides, N. ; Dept. of Comput. Sci., Coll. of William & Mary, Williamsburg, VA ; Fedorov, A. ; Kot, A. ; Archip, N.
more authors

Neurosurgical resection is a therapeutic intervention in the treatment of brain tumors. Precision of the resection can be improved by utilizing magnetic resonance imaging (MRI) as an aid in decision making during image guided neurosurgery (IGNS). Image registration adjusts pre-operative data according to intra-operative tissue deformation. Some of the approaches increase the registration accuracy by tracking image landmarks through the whole brain volume. High computational cost used to render these techniques inappropriate for clinical applications. In this paper we present a parallel implementation of a state of the art registration method, and a number of needed incremental improvements. Overall, we reduced the response time for registration of an average dataset from about an hour and for some cases more than an hour to less than seven minutes, which is within the time constraints imposed by neurosurgeons. For the first time in clinical practice we demonstrated, that with the help of distributed computing non-rigid MRI registration based on volume tracking can be computed intra-operatively

Published in:

SC 2006 Conference, Proceedings of the ACM/IEEE

Date of Conference:

Nov. 2006