By Topic

SOI CMOS Implementation of a Multirate PSK Demodulator for Space Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mehmet Rasit Yuce ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Callaghan, NSW ; Wentai Liu ; John Damiano ; Bhaskar Bharath
more authors

A low-power phase-shift keying demodulator integrated circuit (IC) has been implemented using silicon-on-insulator CMOS technology for deep space and satellite applications. The demodulator employs double differential detection to increase its robustness to the Doppler shift caused by the movement of the space vehicle and sampling technique with 1-bit analog-to-digital converter (ADC) at the front to reduce the complexity and power dissipation. In particular, digital decimation is used after sampling to achieve a low power implementation of multirate transmission. Operating at ultra-high-frequency (435 MHz), the receiver system supports a wide range of data rates (0.1-100 Kbps). From test results, the power consumption of the demodulator circuit including the 1-bit ADC is below 1 mW for data rates up to 100 Kbps

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:54 ,  Issue: 2 )