By Topic

Theory of Optical Gain of Ge-SixGeySn1−x−y Quantum-Well Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shu-Wei Chang ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL ; Chuang, Shun Lien

We develop a theoretical model for optical gain of a strained Ge--SixGeySn1-x-y quantum-well (QW) structure. By using a ternary SixGeySn1-x-y material system as the barriers, a tensile strained germanium QW with a direct band gap for the electron and hole confinements can be realized. We show our theoretical model for the strained band structure and the polarization dependent optical gain spectrum of the tensile strained germanium QW laser taking into account the carrier occupations in both the Gamma- and L-valleys of the conduction band. Reasonable material parameters are used to estimate the transition energy, optical gain spectrum, and effects of the carrier leakage in presence of the quantized subbands

Published in:

Quantum Electronics, IEEE Journal of  (Volume:43 ,  Issue: 3 )