By Topic

An Incremental Adaptive Life Long Learning Approach for Type-2 Fuzzy Embedded Agents in Ambient Intelligent Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hagras, H. ; Dept. of Comput. Sci., Essex Univ., Colchester ; Doctor, F. ; Callaghan, V. ; Lopez, A.

In this paper, we present a novel type-2 fuzzy systems based adaptive architecture for agents embedded in ambient intelligent environments (AIEs). Type-2 fuzzy systems are able to handle the different sources of uncertainty and imprecision encountered in AIEs to give a very good response. The presented agent architecture uses a one pass method to learn in a nonintrusive manner the user's particular behaviors and preferences for controlling the AIE. The agent learns the user's behavior by learning his particular rules and interval type-2 Membership Functions (MFs), these rules and MFs can then be adapted online incrementally in a lifelong learning mode to suit the changing environmental conditions and user preferences. We will show that the type-2 agents generated by our one pass learning technique outperforms those generated by genetic algorithms (GAs). We will present unique experiments carried out by different users over the course of the year in the Essex Intelligent Dormitory (iDorm), which is a real AIE test bed. We will show how the type-2 agents learnt and adapted to the occupant's behavior whilst handling the encountered short term and long term uncertainties to give a very good performance that outperformed the type-1 agents while using smaller rule bases

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:15 ,  Issue: 1 )