Cart (Loading....) | Create Account
Close category search window

A novel wavelet transform technique for on-line partial discharge measurements. 2. On-site noise rejection application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hao Zhang ; Sch. of Electr. Eng. & Telecommun., New South Wales Univ., Kensington, NSW ; Blackburn, T.R. ; Phung, B.T. ; Sen, D.

For pt.I see ibid., p.3-14, (2007). Insulation assessment of HV cables requires continuous partial discharge (PD) monitoring to identify the nature of insulation defects and to determine any degradation trends. However to recover PD signals with sufficient sensitivity to determine such insulation degradation in substations with high levels of electromagnetic interference is a major challenge. This paper is the second of two papers addressing this challenge for on-line PD measurements in a noisy environment. The first paper described a wavelet transform-based method of interference rejection. This paper applies that method to the problem of on-site testing, using both laboratory tests and on-site tests. The laboratory tests were used to stimulate the noisy on-site testing environment, with use of transient pulse-like noise, discrete spectral interference (DSI) and white noise. These noise types have been successfully rejected by the method proposed in the first paper. In addition, on-site tests have been undertaken and have been able to detect PD signals in an old 11 kV substation multi-cable installation

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:14 ,  Issue: 1 )

Date of Publication:

Feb. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.