By Topic

Secure Spread Spectrum Communication Using Ultrawideband Random Noise Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jack Chuang ; Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802 ; Matthew W. DeMay ; Ram M. Narayanan

Ultrawideband (UWB) random noise signals provide secure communications because they cannot, in general, be detected using conventional receivers and are jam-resistant. We describe the theoretical underpinnings of a novel spread spectrum technique that can be used for covert communications using transmissions over orthogonal polarization channels. The technique is based on the use of heterodyne correlation techniques to inject coherence in a random noise signal. The transmitted signal is featureless and appears unpolarized and noise-like; thus linearly polarized receivers are unable to identify, detect, or otherwise extract useful information from the signal. The system is immune from interference caused by high power linearly polarized signals. Dispersive effects caused by the atmosphere and other factors are significantly reduced since both polarization channels operate over the same frequency band. Our results indicate that the proposed scheme can recover voice and data signals with superior fidelity. Simulations show that we can achieve BER values of 10 at an SNR of around -6 dB without channel coding and BER values sufficient for data and video at much lower SNRs when channel coding is employed, which indicates excellent performance under covert conditions such as operating under the enemy receiver's thermal noise floor. We also show preliminary field test results with the baseband processing implemented within a software defined radio architecture that clearly validate the system concept

Published in:

MILCOM 2006 - 2006 IEEE Military Communications conference

Date of Conference:

23-25 Oct. 2006