By Topic

Uni-Modal Versus Joint Segmentation for Region-Based Image Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lewis, J.J. ; Centre for Commun. Res., Univ. of Bristol ; Nikolov, S.G. ; Canagarajah, C.N. ; Bull, D.R.
more authors

A number of segmentation techniques are compared with regard to their usefulness for region-based image and video fusion. In order to achieve this, a new multi-sensor data set is introduced containing a variety of infra-red, visible and pixel fused images together with manually produced "ground truth" segmentations. This enables the objective comparison of joint and unimodal segmentation techniques. A clear advantage to using joint segmentation over unimodal segmentation, when dealing with sets of multi-modal images, is shown. The relevance of these results to region-based image fusion is confirmed with task-based analysis and a quantitative comparison of the fused images produced using the various segmentation algorithms

Published in:

Information Fusion, 2006 9th International Conference on

Date of Conference:

10-13 July 2006